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INFORMATION AND QPTIMAL INCENTIVE CONTRACTS
by

Tracy R. Lewis

Moral hazard in risk sharing agreements often occurs when an agent's ac-
tions can't be observed directly. Quite often, however, "statistical* in-
formation on the agent's action is available through the monitoring of pro-
duction or some other performance index. Contracts with “action contingent"
agreements, providing for differential payment to the agent depending on
whether monitoring reveals the agent's behavicor to be acceptable or unaccept-
able, can induce efficient behavior either if monitoring information is very
reliable or if incentive incompatibilities are minor. Under less ideal
conditions, only second best solutions exist. KNevertheless, there are
gains to monitoring production to obtain data for use in overseeing action-

contingent contracts ameng agents with diverse preferences and incentives.



I. INTRODUCTION

It is well known that moral hazard or incentive problems can arise in
risk sharing agreements between individuals under conditions of uncertainty.
The problem occurs because incentive incompatibilities are sometimes created
in agreements that disperse the risks of an uncertain event among several
economic agents, as in an insurance contract, for example. The divergence
between individuals' incentives will depend not only on the form of the
contract but on the information each agent has about the actions of other
agents and about the state of nature. When an agent's information is in-
complete, or when information is distributed unevenly among parties, there
may be gains to acquiring additional information for use in structuring the-
risk sharing contract. For example, the monitoring of one agent's perfor-
mance can provide information on that agent's behavior. A particular case
of interest occurs when performance is measured by an observed outcome
that is jointly determined by scme agent's action and by a- state of nature,
neither of which can be cobserved separately. In this instance, the observed
cutcome provides statistical information about the observed agent's behavior,
assuming the distribution for different states of nature is known. Examples
of monitoring occur in the typical agency relationships between employer
and employee to prevent shirking, between the government and contractor to
prevent cost overuns and, between insurers and insureds to prevent moral
hazard.1 In this paper, a theory of monitoring in agency relationships is
developed, where the monitor is output or some other index of performance
and monitoring information is incorporated into the agency contracts in
terms of payments and fines for exceptionally good and bad performances.

The theory is consistent with bonus and penalty clauses frequently observed
in agency agreements.

The analysis is based on a standard model of the agency relationship
in which there are two representative individuals, the principal and the
agent. The agent takes some action resulting in an uncertain payoff to be
divided between the principal and the agent. The payoff shares are arranged
to disperse risks between the two parties. Incentive incompatibilities
arise because the agent has a disutility for the action while the principal
does not. At this point previous analyses of the theory of agency suggest

one or two ways to alleviate the incentives problem. First, the agent could



be made responsible for his own action by making his payment shares dependent
on the payoff.2 This would be done, however, at the expense of increasing

the risk borne by the agent under the contract--(see Spence and Zeckhauser,
197), pg. 383). The other method, suggested by Harris and Raviv {(1976) and
Shavell (1977), would be to acquire additional information about the agent's
behavior by monitoring other variables in addition to the payoff. Payments
would then make contingent on the results of monitoring and the inferences
that can be drawn about the agent's behavior, This approach, although
pPromising, is limited in its application by the cost of independent observa-
tions.

This discussion provides the point of departure for our analysis, in
which we consider contracts incorporating variants of both the contingent
payment and monitoring methods for alleviating moral hazard., When, accord-~
ing to the agreement, the agent takes some action resulting in an uncertain
payoff, he receives a net payment which may vary with the cobserved payoff,
which is dependent on the results of monitoring, However, only the payoff
itgelf ié observed, and payments are made contingent on whether the obhser-
vation reveals the agent's action to be acceptable or unacceptable. For
example, in the context of employer-employee relationships, the payoff
resulting from an employee's action would be output. If output is unusually
- low (high) it is quite likely that the laborer is shirking (working diligently)
and he is therefore penalized (paid a bonus). Formally, we define a penalty
(bonus} as a discrete downward (upward) jump in the payment schedule. The
advantage of this monitoring scheme is that it is costless, because it
utilizes information on payoffs which is already available.

This theory of contracts is consistent with penalty and bonus payments
frequently incorporated in agency agreements. For example, salesmen sometimes
receive bonuses for sales in excess of some amount. Insurance companies
offer vastly reduced (higher) rates to customers with exceptionally good
(bad) accident records. 'The explanation we provide for the existence of
bonuses and penalties is that they can be structured to provide obvious
incentives for agents to act efficiently, and to allow for the results of
payoff monitoring to be incorporated in the payments schedule,

The paper proceeds as follows: The formal model of the principal-

agent relationship is presented in Section II. First best agreements are



constructed providing for efficient agent behavior and optimal risk spreading
between the principal and agent. Conditions necessary to enforce these
agreements are discussed. In Section III action-contingent contracts are
introduced, in which payments are made contingent on the results of monitor-
ing as a method to eliminate incentive problems. We demonstrate that when
monitoring information is very reliable or incentive incompatibilities are
minor, a first best agreement can be approximated to any desired degree

by an action-contingent contract. Similar results have been reported by
Harris and Raviv (1976) and Mirrlees (1974). The relationship between cne
principal and many independent agents is considered in Section IV, where

the principal pays a bonus to the agent obtaining the highest output.

Agents compete among themselves for the bonus, and the agency relationship
is modeled as an n-person noncooperative game. It is dembnstrated, under

a certain set of conditions, that agreements between principal and agent
tend toward first best contracts as the number og_players, n, becomes

large. In Section V the conditions on monitoring and incentive incompati-
bilities needed to approximate first best contracts are assumed not to hold,
and we consider second best solutions. We find, nevertheless, there are
gains to monitoring for use in action contingent contracts when only second

best solutions are available.

II. A MODEL OF THE PRINCIPAIL AND AGENT

A. The Model

.We consider two representative individuals, the agent and the principal
referred to as individuals A and B, respectively. The agent engages in
some activity resulting in an uncertain payoff to be divided between the
principal and agent. Payments to the parties are arranged according to a
contract which is designed to spread risks and resolve incentive conflicts.

The agent chooses some level of activity X, where X is a scalar, and
is contained in the closed interval [0,X]} with O<X<w. Depending on the
context, X might represent a level of effort devoted to work or a level of
effort devoted to accident prevention. The activity results in certain
costs and benefits to the agent, which are represented by a net payoff

function, W, with

W = W(X,8) ‘ (Al}



where W is a twice continuous differentiable function of X and 9, and 6 is
a random variable which represents the state of nature.3

The principal and agent both possess the same information on 6, 6 can
not be observed before the action X is taken,4 values for 6 range in the
closed interval [EJE], 0 <8<« 8 <=, and 6 is distributed according to
the known density function f£(8) which has the properties thats

£(8) > 0, 8 € (5,6); £(8) > 0, £(8) > 0 (a2)
£(8) is continuous, 8 £ (8,6) (A3)
lim+ £(8) » 0 and lim £(6} > 0 {nd)
8+ 60

Assumptions (A2) and (A3) are fairly innocuous, but (A3) combined with

(Ad) guarantees that some probability mass exists near the extreme values
of ® which, as we shall explain later, is necessary in order to use observed
payoffs to monitor the agent's behavior.

In many agency relationships, the principal can observe only a portion
of the actual payoff because certain costs and benefits accruing to the
agent are hidden. For example, the insurer can not observe the cost incurred
by the insured to prevent accidents or to stay healthy. In the context
of govermment contracting, the government can observe the costs but none
of the benefits from the project that accrue to the contractor. The partial
observability of payoffs is captured by assuming that W can be written in
terms of twe functions, D(X,8), which can be observed at zero cost by the

principal,6 and C(X,8}, which cannot be observed, with
W(X,0) = D{X,0) + C(X,8) {A5)

where W, D and C are twice differentiable with respect to both arguments
and concave in X.

The agency contract divides the payoff between the principal and agent
according to the schedule P, which specifies a payment from the agent to
the principal. Clearly, P can only be made to depend on those variables,
p(X,6), and possibly X and &, which can observed by both the principal
and the agent. Thus P = P(D(X,0),X,6) and the agent receives W - P and

the principal receives P for a given payoff W.



Associated with the agent is a twice continuously differentiable utility
function uA, which depends on final wealth given by Vo + wix,0} - P{D(¥X,0),X,9)
L] w
where ¥ is initial wealth. We assume uh > 0, uA £ 0 and that there is a

constraint on final wealth

w0+w—P>'ﬁ (26)

where W is either institutionally determined or it represents a subsistence
level of wealth necessary for the agent ot survive,

Define UA(P,X) by

P ex

0
f uA(z(x,e)}f(e)de = Eq4 uA(z(x,e))
9

where 2(X,0) = w_ + W(X,8) - P(D(X,0),X,8) is final wealth and Ey is the

expectations operator. Given a payments schedule, P, the agent chooses an

action X to solve the following problem:

»

max  U°(P,X) (1)
Xe [0,X]

assuming that UA(P, X) z_Ee uA{W(x,B)) z_un(wo), i.e., the agent does at

least as well with the contract as he would under autarky.7 Assuming a

~

' unique interior solution to (1), X is identified by the first order conditicn
[ ]
E, U (2, (X,8)] = 0 (2)

: v 2 A 8
We also require that Ee[u [Zx(X,B)] + u [Zxx(xpalll < 0.

Associated with the principal is a twice differentiable utility func-
] 1]
tion uB which depends on final wealth, P{(D(X,8)), with uB >0, uB < 0.
Given a schedule P and a decision X, the corresponding expected utility to

the principal, UB(P,X}, is defined by

B
u -

6
P sf u® (P(D(X,8) ,X,0))E(6)d0 = E
b

—

e

We assume that principals compete for contracts from agents by offering
attractive payment schedules. In equilibrium, competition will force the
principal to offer an agency contract such that
Ci

uBip,x) = (A7)



where EB is the expected utility derived from the next best alternative
employment for B, and X is determined by the agent according to (l).9

At this stage it is worthwhile to mention a few instances for which our
model is not relevant, PFirst, in our analysis 0 affects only the size of
the payoff, though when viewed in some contexts like health insurance, we
would expect utility to be state dependent.l0 Second, we assume that all
costs and benefits from an action accruing to the principal and agent can
be represented in terms of monetary equivalents. Thus, instances where
there is some psychic pleasure or displeasure derived from the agent's act
are not dealt with in our model. Finally, ocur model assumes that the
parties in the agency relationship, which may include both individuals and
organizations, act as individual decision making units. The collective
choice problems associated with establishing a utility function for a
multiperson oréanization are ignored, and utility functions for the
principal and agent are merely assumed to exist.

B. First Best Contracts

By first best contract we mean the contract that maximizes UA(P,X}

while satisfying the constraints (A6) and (A7) where X can be chosen
independently of (1). This contract is to be distinguished from the
best contract under moral hazard, which maximizes UA(P,X} subject to X

being determined by (1). A characterization of first best optimal con-
tracts will be presented in this section, followed by a discussion of the
requireménts for observing X, and € which are necessary for best moral
hazard contracts to coincide with first best contracts.

Assuming it exists, the first best contract is determined as the

solution to:

max U (P,X) (3)
P,X
subject to {A6) and (A7} where, for now, we will express P as a function
only of D{X,8). Employing standard variational techniques and assuming
‘an interior solution for X we obtain the necessary first order conditions11
AI Bl .
u W({8)) - A u (P(8)) =0 V © (4)

A 1
E.u W ~-P'"D] ~AE
X X ’

B _
6 u [p Dx] =0 (5}

e



or combining (4) and (5} yields

B

Al _ 1 ~ 6
Eg U W] = AE, u [W ) =0 (6)

]
Equation (4) is a familiar condition for the optimal spreading of risk,

Differentiating (4) with respect to £ we can obtain

A“
n_
1
Pt = _L (E) (7)
A“ B" D
u u -]
“ar tEr
a u

For W = D payments are expressed as a function cof the entire payoff, and
we see that P' varies between 0 and 1. P' can be regarded as a measure of
risk sharing between principal and agent. If the principél is risk neutral
and the agent is risk averse then P' = 1, the principal bears all the risk
and the agent is guaranteed a certain income. This corresponds to full
coverage in the context of in;ﬁrance or a wage agreenment in the context of
employer—employee relations. A similar straightforward interpretation can
be given to the case where P' = 0, 'To avoid any confusien, we note that
fina) wealth accruing to the principal and agent is the same regardless of
vwhether P is based on the total or some portion of payoffs. In particular
if P and ; are the payment schedules as a function of D and W respectively,
then we require P(D) = ;(W) for all 6.

We now know a little about first best optima) contracts, but in most
interesting applications of the theory of agency X is chosen by the agent
according to (1}. A moral hazard or incentives problem arises because the
agent does not take into account the effect of his action on the welfare
of the principal. Under some conditions, however, the principal can cbtain
sufficient information to construct a payments schedule that induces the
agent to act efficiently. These conditions, which are formally analyzed in
Harris and Raviv (1976), Leland (1975) and Spence and Zeckhauser (1971}
relate to the principal's ability to observe X and 8 ex post, once the
action is chosen and the state of nature is realized.12 One case in which
the agent can be induced to act efficiently is when D(X,8) and X can be

observed, for then the principal can force the agent to choose the efficient

X = X**by making P(D(X,0),X) sufficiently large for X # x** Obviously, the



principal can alsc induce X** whenever he can monitor D(X,8) and 8, since X
can be inferred from these two observations, It is rather surprising, how-
ever, that the agent can also be made to choose X** when only 6 can be
observed. To demonstrate this formally, note that according to (6) the

first order condition for a first best optimum is EuA‘[wx] = 0 which can be
shown to be identical to the first order conditions for the maximization in
{2) when the appropriate payment schedule P = P(6) is chosen., Finally, Harris
and Raviv (1976) demonstrate that the agent will automatically act efficiently
if he is risk neutral. Henceforth, we shall assume the agent is risk averse
and uA“ < 0.

C. Biases Under Moral Hazard

The conditions on observability and risk preferences sufficient to
insure efficiency are, unfortunately, frequently not satisifed. It is moxe
likely, for example, that the principal can observe the joint effects of X
and 6 as revealed by the value of D(X,6), but that he cannot observe Xor 8
separately. This is the case to be considered throughout the remainder of
the paper. Without direct observations on X or 8, incentive problems
arise, and we can predict under a general set of conditions how this will
bias the agent's choice of X.

To proceed with the analysis we will assume that W and D are monotonic
with respect to 6 and that W8 and De are both positive. This implies that
D is a surrogate for W because both variables move in the same direction
for different values of 0. We shall define D(X,0) as being a cost (benefit)
accruing to the agent from the action X whenever D_ < 0 (>0) for Xe[0,X].
Denote the first best action by X**, the optimal payment schedule by P¥**,
and action chosen by the agent to solve (2} by i. We can now state

PROPOSITION 1. The agent will choose an X greater than (less than) X**

under P** (D) whenever D is less than (greater than) zero.

PROOF: It suffices for us to show that according to (2) which we assume is

-

¥
sufficient to determine X that EeuA [Zx{X**,ell > {<} O as Dx < {>) 0,

and that the eqguality in (2) holds for an X > (<) X** as Dx < (>) 0.

1
Define ¢(X) = EeuA [wx] and note $({X**} = 0 by (6). We will now show that

the concavity of W with respect to X and the fact that for each 0 and X
P**(D(X,0)) = P**{W(X,0)}, where P** is the optimal payment schedule as a
function of W, imply 2'(X) < 0.



' A" Al

¢ (x} = Eeu [Dx + Cx - p*xt Dxllwx] + Eeu [Wxx]
=Bl D +C -t w i) + En W] (8)
il ;) X X X x e XX
_ All -"' 2 A‘
= Eeu {1 P**')l[Wx] + Eeu wax] <0

From the fact that $(x**) = 0 and P**' > 0 which feollows from (7}, we cobtain

1 ]
B [z (x%*,8)] = $(x**) + Eu® [-pa#t D, ] 30 as D, Zo. (9)

Thus to satisfy the first order condition in {2) for the agent's maximization,
' (x) < 0 implies x 5 x** as b, < o.

A heuristic explanation of the result in proposition 1 is that because
of the incomplete information available to the principal, payments must
be based on only é portion of the payoff and this introduces diverse in-
centives between £he principal and agent. When Dx > 0, for example, and
payments are based only on benefits, then the principal shares some Qf the
benefits but none of the costs of the agent's acticn. The agent has a
disutility for the action while the principal does not, and consequently
the agent chooses an ; which is less than optimal.13 The results of
Froposition 1 are illustrated with several examples of agency relationships.

{(a) Emplover-Employee Relationships. Without information on the level

of effort put forth by the employee, the employer can only observe and make
remuneration dependent on output. Consequently there is a tendency for the
employee to shirk, since he has a disutility for effort while the principal
does not.

{b) Government Contracting. Cost overruns are commcn with defense

contracting since the government and contractor share only the costs of the
contractor's decisions, but the contractor retains some of the benefits.
These hidden benefits, which take the form of R & D advances that are useful
to the firm in developing products for the private sector, induce excessive
expenditures on the part of the firm in satisfying government contracts.

(c) Accident and Health Insurance. The biases introduced by prepaid

insurance depend on vhether actions taken by the insured which can't be
observed by the insurer increase or reduce the cost of being ill or having

an accident. If the action is preventive and reduces costs to the insurer,
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there will be insufficient attention to that action on the part of the insured.
If the action; provides some intangible benefits to the insured, such as the
extra attention a patient receives as a consequence of more frequent visits

to the doctor, then medical facilities will be overused.
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ITI. ACTION CONTINGENT CONTRACTS

The foregoing analysis suggests that the information required for the
principal to enforce a first best optimal contract may not be available.
Thus, one needs to consider hest contracts under moral hazard in which the
self maximizing behavior of the agent in choosing an action is explicitly
acknowledged. The agent's behavior will be shaped by the payments schedule
he faces, and one alternative is to choose the schedule P{D) to maximize
UA(P,X) subject te (A6), (A7) and the constraint that X is chosen by the
agent according to (l}. Another approach is for the principal to acguire
additional information about the agent's behavior by monitoring other wvari-
ables in addition to the payoff, as suggested by Harris and Raviv (1976)
and Shavell (1977). They demonstrate under certain conditions that con-
tracts with payments being made contingent on the results of monitoring can
dominate contracts which do not involve monitoring.

In this section we analyze a contract that incorporates the results of
monitoring, where the observed payoff, D{X,8), is utilized to make statis-
tical inferences about the agent's behavior. &an action contingent contract
ig introduced in which payments are made contingent on whether the observa-
tion of D reveals the agent's action to be acceptable or unacceptable, The
advantage of this monitoring scheme is that it is costless, because it
utilizes information on payoffs which is already available. We identify
conditions under which a first best contract can be approximated to any
desired degree by an action contingent contract. Finally, the application
of these regults ig illustrated with an insurance example.

We begin by noting that ohserved payoffs, D{X,0), provide statistical
information about the value of X chosen by the agent, The assumpticn that

De > 0 implies we can solve for 6 as a function of X and D with
8 = h(x,D) (1.0}

Then, for an observed value of D, we can represent the conditional distri-

bution for X, denoted by g(X/D) as
g(x/D) = £(h(X,D)) !hx| (11)

Thus the principal has information on the relative likelihood that the agent
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has chosen a certain value for X from ex post obgervations of D. If Dx > 0,
for example, one would expect that the conditional probability that the
agent will choose an X greater than some level increases with larger ob-
served values of D.14

Recall from proposition*i that whenever Dx > 0 there is a tendency for
the agent to choose an X < X . Then for a low (high) observed value of D,
the principal can infer with high probability that the agent is (is not)
shirking. To reduce the incentive to shirk, the agent might be penalized
{or paid a bonus) whenever extremely low or high values of D are observed.
The same bonus-penalty scheme would eliminate incentives for the agent to
overact when Dx < 0.15

In the action contingent contract the principal incorporates the re-

sults of monitoring into the action contingent payment schedule by penal-
izing the agent whenever observed D is low and by rewarding the agent when-
ever D is high. In this section we introduce the action contingent contract
with penalties, noting that the development is similar for contracts with
bonuses. To make the analysis more concrete and to simplify the exposition
henceforth we restrict our attention to the case

D{X,8) concave in X and 8, Dx >0, D

>0, C=C(X) and C < O (AB)
%6 x

The development of results for other cases should be apparent from our dis-
cussion. Assumptions (AB) apply to an insurance or employee-employer rela—
tionship in which the action X is beneficial in reducing insurance costs or
increasing output, and associated with the action is a cost, C{X), incurred
by the agent.

The action contingent contract is defined as a payment schedule denoted

by P({D) with the prc:perties16

=2

P** (D) - 6(B,x**) if D >
P(D) = (12)

-~

P(D,D) ifD<D

~

Payments are given by the continuous function P(D,D}) > P**(D), whenever D

is less than some specifi#d level D, and the agent is penalized. Otherwise

payments are given by P** (D) adjusted by the constant, §{(D,X**), to insure
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(A7} is satisfied, Payment schedules vary with the principal's choice

of D, which is emphasized by writing P, P, and & as explicit functions
of D.

The constant G{B,X**) is derived as follows. Given an observed D, the
principal tests the hypothesis HO: the agent is shirking, against the al-
ternétive hypothesis HA: the agent is not shirking, and accepts H whenever
D £ D. Assume for now that the agent can be induced to choose x**. given
the schedule P(D). Then for 6 < B = h[D X**}, D{X**,08) < D and the princi-
pal incorrectly accepts Ho' 1.e:, he commits ? type II error and penalizes
the agent. Otherwise, for™ > 08, D(X**,08) > D and the agent pays P** (D) =~
G(X**,a), where § is defined by the expression

B (D,X**) [}
f w2 (P(D,D) )£ (8)d6 +f WP (P** (D) - &(X**,D))£(0)d8 = O°  (13)
0 6 (D, X**)

-

The constant § represents the variation in the payment schedule necegsary
to maintain the expected utility of the principal at the same level EB for
different payment-penalty schedules,

The problem in designing P(B)'is that type II errors are undesirable
because they reduce the expected utility of the agent, nonetheless it is
necessary to preserve the threat of penalizing the agent for small values
of D in order to discourage shirking. In what follows we derive conditions
for making the welfare loss from type II errors arbitrarily small while
maintaining a penalty threat sufficient to prevent shirking. With these
conditions, it wili be seen that a first best optimal contract can be ap-
proximated to any desired degree by an action contingent contract.

An action level X** and payment schedule P are said to be enforceable,
or merely X** ig enforceable, if the agent can be induced to choose X*¥,

given the schedule P. To simplify notation define

Zl {x,8) = w + W{xX,0) = P(D(X o) D)
2% (x,0) = W+ W(X,0) - PFED(N,0)) + §(X*H, D)
E =

expectations operator for & ¢ [QJB]

9
0

v {A

8
E a expectations operator for 8 £ (6,0)
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Thus according to BP(D}, Z = Zl if D<Dand Z = 22 if D > D, Then a

necessary condition for enforceability of X*#*, derived from (2) and (12), is

o ) . A', 1 ) L A2 2
L I R L I N S R
+ £(6) g—g- Wizl - Pidy = o (14)

where X = X** and 8 = h(D,X**)},
In order to reduce the probability of a type I error, we would like

to construct payments schedules for which X** is enforceable as D -+ D(X**,8)

~

or 8 > 8., Necessary conditions for enforceability of X** in the limit as

-

€ » @ are given in

Lemma l: Necessary conditions for the enforceability of X** in the limit

~

+ ,
as 0 + 8 are that there exist a payment schedule P(D(X**,0))

such that
1 —_—
{a) Z7(X**,0) > W
(b) Egu® (2(X**,0)) (2 (x**,8)] + [u" (2 (x*+,8))

- o® (Z(x**,0))] Ef tim £(6) =
6+0’

where Z{X**,6) = W + W(X**,8) - P** (D(X**,8)).

Proof: The necessity of {a) follows from (A6).

To establish (b) note that enforceablllty requires U (P(D) X**) = 0.

-~

Thus enforceability in the limit as B > B requires 1lim U {BP(D) ,X**) =

grot :
which is precisely the condition written out in (b)., The existence of the
limit ig guaranteed by the continuity of the functions uA, 5} £, D, and C,
though the continuity assumptions are not necessary.

Condition (b) in lemma 1 has an intuitive interpretation. The term

EeuA {(Z(X**,0}) (2 ], which is negative, measures the 1ncent1ve, in expected
utility terms, for the agent to shirk. The term [u (Z (X**, B)) - u (Z(x** 9)1]

is the loss in utility from penalties. Finally, for a given B, the
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"

(D,X**) -
probability of being penalized is J? £(8)ad, Thus, £(9) g%—, is the
6

ey

reduction in the probability of penalization for an increase in X, X = X**%,
Taken together, (b) implies that if X** is enforceable in the limit, the
returns from shirking are offset by the increase in the probability of
being penalized weighted by the utility cost of the penalty. The prospects
for enforcing X** in the limit will depend on the (1) agent's tendency to

1
shirk, reflected in the magnitude of E o [Zx], (2) the potential for the

principal to penalize the agent, whicheis limited by (a6) and (3) the sensi-~
tivity of the penalty region to variations in X. The necessity of (A4) is
now made apparent. The effect of penalization as a deterrent to shirking
varies directly with the probability mass situated near the penalty boundary
point 6. -

If the necessary conditions for enforceability are satisfied in the
limit, we would expect the enforceability conditions to hold for values of

® sufficiently close to 8, and this is the’message of

Lemma 2: If there exists a P(D{X**,0)) such that conditions (a) and (b)
of lemma 1 are satisfied, then there exist schedules, P (D)}, which

satisfy the necessary first and second order enforceability con-

ditions
(a) o (P(D),X**) = 0
o) ¥ EO,xt) <0
$To'd '

A oA

for 6 € (9,86") where 8 = 8(D,X**) and 8' > 8.

Proof: Part a The limiting schedule, P(b(x**,g)) can be represented by

P**(D)  if D > D
(D) =
P(D,D) ifD <D
where D = D(X**,08) and we note G{X**,B) + 0 as 6 > D.
Consider an arbitrary continuous penalty schedule 5;(0,5) wﬁich satis-
fies the requirements that it be bounded below by P** (D), that it be bounded
above by the constraint (A6), and that P_ B,0) = P(5,D).
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Then construct two new payments schedules

B**(D) + 6,(D,X**) if D> D P (D) + 6,(D,X**) if D> D
P = LB =y .
PO(D,D) - £ if D E_D PO(D,D] + £ if D f_D

where € is a positive constant, small enough to maintain the boundedness
properties of the penalty schedule and 61 and 62 are implicitly defined by
(A7). Then for D = D we have

P*%* (D) ifED>D P*¥ (D) ifD>D
Pl(D) = . _ PZ(D) = ‘____i _
P(D,D) - € £ D <D P(D,D) + € if D <D

and it is easy to verify that U:(Pl(E) JXEH) < Ui(P(E} JXA¥) = Q < U:(Pz (DY, x**) .

l 2
and U (P ;X**) are continuous in D as well Therefore there exists a b’

sufflclently close to & such that U {P (D) X**) < 0 < U (P (D) L**), for

The schedules P. and P, are continuous functions of D, so that Ux(Pl,x**)

D= D(x**,e), B e (6,8'). We wish now to show that there exlsts anotherx

payment schedule P,, constructed from P, and P, such that Ui(PB'X**)' which

3 1 2

is defined relative to P3, is zero. Consider the schedule
P** (D) + 63(D,X**.u) ifD>D
P3(Dek) = . .
PO(D.D) + if D <D

. . . A -
where | ranges in the interval [~e, £€]. We can easily verify that U {P (D,u) ,X**)

is continuous in p since P, varies continuously with u. But U (P (D,-s) X**)

3
< 0 < U (P (D €),X**) and the continuity of UA with respect to u 1mplles
there exlsts at least one uo such that -£ < u < g such that U (P (D,u) XER)
= 0,

Part b See the Appendix.

Lemmas 1 and 2 describe situations in which we can construct scheduales,
P(D), which satisfy the necessary enforceability conditions for 6 ¢ (9,6').

Sufficient conditions for enforceability are given in
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Lemma 3: If (a) U {(p** (D) ,X) 15 concave in X
(b) Schedules P(D) exist such that U (P(D) (XFFY =
for 9 € (8,6') , 8' > B
then (P(D) X**) is enforceable for B e (8,067).

Proof: See the Appendix.

0

Lemmas 1-3 provide the necessary basis for establishing the primary

result of this section.

-

Proposition 2. If there exist payment schedules, P(D}, such that X** ig

enforceable for 6 e (236') then a first best contract can be approximated

to any desired degree by an action contingent contract.

Proof: By the construction of § (X**,D) we know UB(P(D),X**)

= EB for all D,

Thus, we need to show UA(P(D},X**) - UA(P**,X**) as B + QT to estab-

lish the proposition.

Define
(i) Z** (X*%,0) = w, t W(X**,0) - p**(D(X**,0))
(ii) Z(x**,0) = W, + WX**,8) - P**(D(X**,8)) + § (X** ,D)
=w_ + WEX*,0) - P (D{x**,6),D)
(ii8) Z = inf (Z (x**,8))
o
(iv) % (D) = UP(prt,x*%) = VP (P (D), x**)

Note that Z exists since 2(X,0) is bounded away from E'by (no6).

have

>

»

Then we
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¢) = 5,2 @) - P@) + gy s Wiz - u ()]

< Boep ta® (ze%) - u*(2)]

< Foep [a®(z*%) ~ u*(2)) + 0 as 6 » §”.

Proposition 2 implies that if action contingent contracts with penal-
ties can be used to enforce X**, then the first best optimum contract can
be approximated to any desired degree, though it can never be achimre:cii.]"7
It is a mathematical curiosus that the optimal action contingent contract
does not exist. Similar results cccur (as demonstrated in the next section)
when action contingent contracts with bonuses are used to enforce X**,
Lemmas 1-3 deal with the requirements for enforcezbility and indicate that
whenever (a)} incentive problems are minor, (b) monitoring information is
very reliable or (c) large penalties for shirking can be imposed, then it
is possible to induce X** with an action contingent contract. These results
are illustrated with the following example provided by Spence and Zeckhauser
(1971) in their discussion of insurance.

in terms of our notation, the Spence-Zeckhauser example involves an
insurer who is risk neutral and who faces a breakeven constraint

EB P{D(X,08)) =0 (15)

and an insured who has a utility function uA(Z) = log(Z), where Z > 0. The

/2

insured takes an action X resulting in a payoff W(X,08) = (X‘G}l - X where
DIX,8) = (x-8)%/?

uniformly distributed. Under these conditions the first best optimal con-

and C(X) =-X, and ® ¢ (8,8] is a random variable which is

tract requires that final wealth Z = Z be constant for all 8 implying that
prEt = 1 (16)
and that X be determined by

E, W (X,0) =0 ' (17)
8 x

However the insurer cannot observe X directly and, given a payment schedule

~

P, the insured will choose X according to
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A.
E, w [2_(X,P}] 20 (18}

with X = 0 and .

A'

Ee u [-1} < O {19)
for P = P**, According to Spence and Zeckhauser, a second best solution
for this problem is to choose P to maximize UA(P,X) subject to (15) and

(18). The payment schedule resulting from this maximization is given by

/2

P=D-¢g - B(1+yD)l (20)

vhere a, B, and y are positive parameters,

However, we can construct an action contingent contract

P**(D) - §(X**,D) =D + C(X**) - Z + & if D>D
P(D) =

y

-

B (p,D) if D <D

-

which dominates P and approximates P** (D) to any desired degree. To see
this, note that uA{O) = -« and thus arbitrarily large penalties can be im-
posed on the agent by choosing Ekb,s) sufficiently large such that 2 is
small. 1In this case, the necessary limit conditions for enforceability in
Lemma 1 are satisfied, assuming 8 > 0, which in ;his example implies g;-# 0.
Since UA(P**,X) is concave in X and the necessary and sufficient conditions
for enforceability in Lemma 3 are satisfied, X** is enforceable for 5 E
(6,0') and Proposition 2 implies P** (D) can be approximated to any desired
extent,

Note that the action contingent contract is unfair in that there is a
small probability that the insured will be penalized severely even though
he acts 0ptimaily to choose X**, Nevertheless, this injustice is outweighed
by the performance of the contract and there would be a loss in efficiency
if such penalties were prohibited. Alternatively, the insured might be
penalized, independent of the observed value of D, only if he could not
verify he had chosen X**., With random verification and large penalties for
shirking it might be possible to enforce X**, However, the costs of veri-
fication borne by the insured would result in a loss of welfare as compared

18
to the action contingent contract.
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One may inguire if it is desirable to construct action contingent con-
tracts where the penalty region falls in the interior of the feasible set

of D values, such that

*k xk 3
o PE*{D) + 6({X 'Dl'DZ) if D¢ [Dl,Dzl
PO =0 .
P(D'Dl'Dz) if D e (Dl,Dz)

-~ -

where (DI'DZ) is a penalization interval in the interior of the feasible
set of D. The problem with this schedule is that it is impossible to en-
force X** because the penalization interval gets arbitrarily small as

iy o+ 1 —
D, +D. . To see this, let 27 = w_+ W{(X**,8) -~ P{D(X**,0)), 22 = wo +

W(X**,8) ~ P**(D(X**,6) + §(X**,D ,D), 6. = h(D ,X**) and 6, = h(D,,X**).
Then
VB eo. 00,8 =~ ot @] + B0~ o ehih v wPEdigd)
x 172" 6<8, X 6,<8<6, X 6>9 X
. an . X ao
1, a1 A 2 - 2
+E6)) g [z 6, - 0t + £, =2
A, L2 A N
iz @,)) - uPizt e, (21)
R At .
It follows that 1lim Ux (P(Dl,Dz),x**) = Eeu (Zx) < 0, It is consequently
g.»6
279

impossible to enforce X** without some minimum probability of making a
_type II error which reduces the welfare of the agent.

The necessary conditions for enforcing an optimal action X** presented
here and in the next section are admittedly gquite strong and frequently
will not be satisfied. 1In section V, however, we will demcnstrate that an

action contingent contract is beneficial for both the principal and agent
.under quite general conditions, even when it is not possible to approximate

first best optima.



21

IV. N PLAYER BONUS SYSTEM
In agency relationships involving one principal and several agents, one

frequently observes what we shall call an N plaver bonus system. Employer-

employee relationships in which the worker with the highest output or the
salesman with the greatest sales is paid a bonus are examples of the bonus
system. The opportunity to earn a bonus provides incentives for all par-
ticipants to try harder. In this section we demonstrate that the N player
bonus system behaves similarly to the action contingent contract as a device
to prevent shirking.,

Formally, the bonus system is described as an N person noncooperative
game. There are N independent, identical agents directed by a single
principal. Each agent Ai chcoses an action Xi resulting in a payoff
w(X,ei) = n(xi,ei) + c(X), where the functions W, D and C have the properties
listed in (A8). The random variables Bi are identical and jointly distri-
buted according to the continuous joint density function fN(el...eN).

Marginal density functions are denoted by fN(Bi) and are assumed to have the
property that fN(Bi} > 0 for Bi € [236].19 Generally we would expect the

Bi's to be correlated with each other to reflect the similarity in working
conditions confronting individual agents.
For mathematical simplicity we shall assume the principal is risk
neutral, although the results we are to pregent hold under rigk aversion
as well. If the principal could enforce a first best contract he would
choose a schedule Pﬁ*(D) and an XE* (N denoting the dependence on the number
of agents) as the soluticn to

N A
i
gaxx . E . [iil u [“b + W(xi.ei) - PN(D(Xi,Gi))]] (22)
. o 1°°°°N
subject to a breakeven constraint for the principal

N
E L PN(D(Xi,Bi)) -G=0 {23}

01...0N i=1l

where G is a market determined competitive return for the principal.
Equation (23) constitutes a particular form of revenue sharing where the
principal expects to collect a return G while he redistributes net payoffs

to the agents to maximize the expected sum of their utilities. The
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solution to {22) requires P;*'(D} = 1 and that each agent receive the same
net payoff, independent of D(Xi,Bi). Confronted with the schedule P;* each
agent will shirk and choose an Xi = 0,

The bonus system may be used to prevent shirking; one particular form
of the system is given by the schedule

*% 3
PN (D} + GN if D < mix (n(xi,eili

2

** - 3 =
PN (D) BN if D mix (D(Xi,ﬂi)]

where BN < « is the positive reward given to the worker or salesman with the

highest output or sales and GN' defined by

E 0

[ P_(D(X**,8,))] - G
91...0N N i

is a compensation to the principal for the extra bonuses paid out under

PN' assuming Xi = X** for all i. Bonus payments such as B _ are freguemntly

used to reward the employee with the best apparent perform:nce based on
sales or output. Bonuses given to the worker with the least number of
absences or the best accident record also are examples of payment systems
that reward hard work and diligence.

We assume there is no collusion and, given a payment schedule, each
agent independently chooses an action to maximize his perceived expected
utility. For a particular D(x .0, ) = D ; the probability, denoted by -
Pr{B |D + X ), that agent A w111 receive a bonus, givern the other N -~ 1
agents choose an action x r is the probability that

- 1 L]
Bj <@ (Di,x ) o= h(Di,x } for j # i or

pr(sg|p,,x') = F,_ (8...8]0,) . (25)

where F (6...9|B ) is the conditional probability that Gj <8 for j# i

given Bi.
Define
1 = - +* & - 3
Z (xi,ei) wo + W(Xi,ﬁi) PN (DCKi,Bi) GN if D <« mix Di
X =
2
X = - * 3 =
2 irhi) Wy t W(Xi,Bi} PA* (D(xi,ﬂi)) + By, if D = max D,

i
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and A t A

b, ,x) = pr(s_|D x) ul (2% + [1-Pr(s |p X1 M izt
if - ) L u + a L U u

where V i is understood to be a function of xi. {The explicit dependence
of some functions on their arguments will be dropped where no confu51on
exists). Then the expected utility of agent i given PN' X, i’ and x is glven
by
o} Goxx) =m vl (28)
N i

9;

and agent i chooses xi € [0,X] to maximize (28}.20 Assuming a unique

interior sclution, a necessary condition for the maximization of (28) is

Ai 3] A ' Ai' 1 1
voo= A {Pr * v (z )[z ] + {1-Pr) u (2 )[zx]} fu(ei) dei

+f6 b - u b)) e £ (6,) do, = o (29)
A X N 1 i

We assume the agents are symmetric so that each one uses the same
strategy in choosing xi. The above construction defines a noncooperative
" game with incomplete information, with agents competing against one another
for the bonus. Because the game is symmetric, and equilibriuvm strategy is
one that is optimal for each agent if each other.agent uses it. In this
section we identify necessary conditions underwhich X;* is an equilibrium
strategy and thus a choice of xg* for each agent is enforceable. For two
reascns, we are particularly interested in the properties of the N-player
benus sytem as the number of players becomes large. First, large scale
bonus competitions involving many participants exist in the real world in
the form of factorywide competitions amcng workers and national and regional
competitions among salesmen of a certain product. Second, we demonstrate in
Eroposition 3, that whenever xﬁ* exists as an equilibrium strategy given
PN then the bonus contract apprcaches the first best contract for W suf-
ficiently large. Necessary conditions for a unique equilibrium strategy
xﬁ* to exist for N large are contained in lermas 4-6,

Toc proceed further with the analysis we shall assume

Pl (9...9|91} is a differential function of 6 (n9)

for 0 ¢ [6,6)
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FN_l(...|ei] _:_'_FN,_I(...IBi),”N < N' (A10)
" —

Foq (oo [0) »0as N+ 0 <0 (a11)
EN(Bi) is continuous in ai and it converges uniformly to

some function T (A12)
£(6,), where £(8,) > 0 for 0, € [8,8]
xﬁ* > X*k* gg N » @ (Al13)
Pﬁ*{D] converges uniformly to some function P**(D) as N + » {nl4)

Assumptions {A9) and (212) are fairly unexceptional, (al0) and (25} imply
that Pr(BN|Di,x') decreases as the number of players increase, and (All)
and (25) imply that as the number of players becomes large, the probability
that an agent can win the reward by drawing a 0 < E-approaches zero., As-
sumptiong (Al12), (Al3) and (Al4) are regularity conditions that insure the
continuity of the first best optimal solution as N -+ «.

Suppose schedules P, exist that induce an equilibrium at xﬁ* so that

N

each agent's best choice given X' = xﬁ* is xﬁ*. Then the condition in (29)
. A, ' . .

holds and evaluating EV& 1 at xi = ¥X** and X = X** and integrating by

parts yields

" 8|0) Mo e s ner (o aje)1t "1l Bh) £ o) @

e n_l LR IR 3 u x N—l LI I J u x N
8.7 6 .

D A A, 1
_ i, 2 1
+F_(0...8]0) —ﬁ‘j £,08,) [u (z) - u *(z )] (30)

e,=
;-8

-/.E a | Px [Ai 2 By 1]]
" Fu-p(8---00) S By 0 |v (=) - w ] [e 0 a0 =0

]
vhere Pr(BN[Di,x } = Pr(Bnlni’xi) = FN_ltﬂ...Ble) with @ = Bi. For any
converging sequence, BN -+ B, our convergence assumptions on Fn 1’ fﬁ' PE*,
AL -
and Xg* imply that lim E 1vx exists. An necessary condition for enforceability

et .
in the limit, obtaiged by evaluating (30) as N + @ is
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® a, A, L A _ _ D_(x**,6)
f u Tzl [zi] £(0)d0 + {u ~(z°(8)) - u 1z 1@ £(8) X — =0 (31)
3 Dy (X**,B)

0 0
We have thus establiched

where 5 = w_ + W(X**,8) + P**(D(X**,0)) and Z% = w_ + W(X**,0) ~ P**(D(X**,6)) + B

Lemma 4. A necessary condition for the enforceability of xﬁ* in the limit as

N -+ « is that there exists a payment schedule PN such that

A A, . __ D_(x**,79)
E, ul(zh) 1211 + 2@ -t @) g X2 -0
i De(xi*;e)

This condition can be interpreted similarly to condition (b) in Lemma 1. The
term EB. uAi[zl)[zi], which is negative is a guage of moral hazard given

the firét best contract P**. It measures the incentive, in expected utility
terms, for the agent to shirk. The positive effect of the bonus B on ex-

pected utility is given by the second term where _ Dx(x**,§3
£(6) —————— = lim
Da (X**,0) N+

dPr
dx

Taken together, the condition implies that if X** is enforceable in the limit
as N + « then the incentive to shirk is offset by the increase in expected
utility from rewards. Note that (31) is stronger than condition {b) of
Lemma 1, since the latter does not require that f(§3 > 0, but only that

Lim  £e) > ol

6+ 0
As an immediate consequence of Lemma 3 we have

Lemma 5. If thefé exists a B such that (31) is satisfied, then there exist
schedules EN such that uxAi (EN,x;*,x;;*) = 0 for all N > N' where N' is
sufficently large. The proof is omitted since it is formally similar to the
proof of Lemma 2.

Lemmas 4 and 5 identify necessary conditions for enforceability, but
we should also like to derive sufficient conditions as well. Unfertunately
there seems to be no natural or easy characterization of the density func-
tions and payment schedules that will insure that UAi is concave in le and
that will guarantee the existence of an equilibrium strategy at xﬁ*. Further,

we should like to know conditions under which equilibrium strategies are
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unique, assuming they exist. Fortunately, we can make some progress in

this direction. Suppose an equilibrium strategy exists for some schedule
~ 0 o A; - 000 . . Ay
P at X =X . Then (29) implies U_ l(PN,K »X') = 0. Differentiating U_ 1
with respect to X and substituting for Pr from (25), we obtain (note that

xi = X' = X for all X)

A 0 A,

_da i 2, .2
v t=as F_p(8...018) [u *(z)2) £, (0)de

i3
A 1 1
+— Fo(0...8]00) tu *(z7) z,) £ (6)as (31)

A, Y- D,
fu *(z J -u (z7)] fN{B...G} B;-fN(e)de

ﬂ-lﬂs
‘N
jeo

A The first two terms are negative by the concavity of u l(Zl} and

1(22} with respect to X. The last term is harder to sign as it depends
on the sign

A A A, A,
ter, & (u Mz® - w fizh + (u tef - a ety Ly (32)
D

where Pr = BE fN{B...E). The flrst term in (32) is positive and the second

A
term, which eguals (u 1(22) - (Z 3 f {6...0) E;-( ), is negative so
B
that sign in (32) depends on relative magnitudes. Rearranging terms, we
obtain that the sign in (32) depends on

A A

SwiEh -utey Loer | |
X X -
sign R, . + Pr {33)
(z ) - u Mz *

The expresgions in (33} and consequently the expression in (31) will be
negative if as X increases the percentage decrease in Pr_ is greater in
absclute terms than the percentage increase in uAi{Zzl -u i(zl), the

gain in utility from the bonus. This is a stability condition which implies
that the marginal expected gain in utility from the bonus is always positive
but decreases with larger X. Consequently, if the stability condition is
saticfied for X, é---U < 0, an equilibrium strategy is unique whenever it

dx
exists, We have thus established
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Lemma 6. If an equilibrium strategy exists and if the stability condition
a B2 Ao
™ fu 2z - u @@ Pr_ < 0 is satisfied, the strategy is unique,

We now turn to the primary result of this section

Proposition 3: If there exist payment schedules, PN, such that x&* is

enforceable for all N > N', then the N player bonus contract approaches the
first best contract for N sufficiently large.
Procf: By construction of GN, UB = EB = G for all N, so we need to show

Aj - i
* &k * & * % * % * % 13 3
u (PN,XN 'XN } > U (PN ,XN 'XN ) for N sufficiently large. Define

(i) Zﬁ* = WO + W(x;*:e) - P;I*(D(X;&*'B))

A Ai -

(1) 8(n) = U “(BR*, XE* A% = U T (R, XEx, XH)
For N > N'
[) A, A,
1 i, 2
D < ¢{n) = Priu “(2**) - u (2.)] £.(6)d0
o N N N
) A A, 4
+ {1 - Prlfu “(z**) - u “(z)] £ (8)ae
o N N N
[} A, A,
i i, 1, .
< [l - Pr)fu "(2**) - u ~(27) £ _(B)ae (34)
= Je N N
1 N
. * & o ) *k %
We now show 27 -+ ZN as N +» «», Let ZN EB....G '2 PN (D(xN ,ei))
22 i N i=1
From the definition of GN we have
GN(N—D + }:N = 13N + G (35)
or By _
N1 | (361

since EN =G by (23). Clearly GN + 0 as N + = gince BN igs bounded above

by assumption. Thus Zl + Zﬁ* as N + « and

) A, A,
0 < @ < [1 - Prlfu “(z2) - u *(2)1 £,(6)d8 + 0 (37)
~ Jo N N

as N + =
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Proposition 3 lends some theoretical support to the notion that large
scale bonus competitions can be used to prevent shirking. However, as we
found in the previous section, the conditions for enforcing an optimal
action X are quite strong and frequently will not be satisfied. We now

turn to a more general case where the enforcement of optimal actions is not

possible,
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V. ACTION CCNTINGENT CONTRACTS IN SECOND BEST SITUATIONS

The foregoing analysis has dealt with the use of action-contingent pay-
ments and bonus systems to approximate first best contracts in agency re-
lationships. To approximate such agreements, the action contingent contract
must provide incentives to avoid penalties, or to achieve bonuses, that are
sufficiently great to offset the tendency for the agent to shirk, Frequently,
though, the conditions on monitoring and constructing payment schedules
necessary to induce optimal agent behavior are too stringent. In such cases,
only second best contracts exist where the diversity of incentives between
principal and agent restrict the set of feasible agency agreements.

In this section we construct second best solutions invelving the use of
action contingent contracts. The principal result we obtain is that under
quite genral conditions there are gains to monitoring for use in contingent
contracts even when the requirements for approximating first best agreements
are not satisfied. In fact, it is seen that the requirements for first-
best approximation are but a special case of the general conditions for
gains to monitoring. To demonstrate this, we begin with the contract
derived from the standard moral hazard problem, considered by Spence and
Zeckhauser, Mirrlees, and others, which is to choose a continvous payment
schedule P(D} to maximize UA(P,X) subiect to the constraint that X is
chosen by the agent to maximize his expected utility UA(P,X). Denoting
P*{D) and X* as the solution to this problem, we show that under the as-
sumptions of section III, (Al-A8), there exists an action contingent con-
tract that dominates P*{(D}. With the contingent contract, penalties are
assessed against (bonuses are paid to) the agent whenever extremely low,
(high) wvalues of D are observed. The information from monitoring and the use
of contingent payments increase the expected utility of the agent even
though conditions for first-best contract approximation are not necessarily
satisfied.

A. Derivation of P*{D)

As a benchmark for the evaluwation of action contingent contracts, we
consider the contract and action level (P*(D),X*) derived as the solution
to the problem:

max  UM(P,X) (38)
P(D) . X
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subject to (A6), (A7), and
Al

Eeu [Zx] -y =0 (39)
where Z = Yy + W(x,0) - P(D(X,0))}. This is the standard formulation of the
moral hazard problem where the principal chooses a payment schedule P(D)
according to {38) given that it is impossible for him to monitor X.
Normally, the parameter y is set equal to zero in (39), indicating that the
agent chooses a level of activity X to maximize expected vtility, given
the schedule P. Our reason for retaining the general form of the con-
straint (39) will become clear below. The formulation in (38) is subject
to two difficulties. First, the constraint that the agent choose X to
maximize UA(P,X} given P, is equivalent to (39) only if, for example,
U{P,X) is concave in X. But the concavity of U depends on the schedule P
which is unknown. Consequently, one must verify that the constraint {39)
is valid once P*(D) is determined. Second, the problem in (38} seems well
suited for control theoretic® techniques, but it is impossible to write (38)
as an optimal control problem. The difficulty is that if we take P as
the control function, the equation of motion (39) contains the derivative
of the control.23 Instead we can treat this as a problem in the calculus
of variations. Assuming the optimal payment schedule is twice continuously

differentiable, we obtain the necessary conditions for a unigue interior

solution
At + 60t =0 | (40)
xxX X
D D _
A" Al d x x £'(8) , B _
Aul [Cx] +u 1+ 2 35 (—-DB) + A _*Da £(0) bu =0VY o0 (41)

éibng with (26), (A7) and (39), where XA and ¢ are the multipliers attached
to the constraints (39) and (A7) respectively. To simplify notation, '
denote (P;,x;,l*,éY) as the solution to (38) to signify its dependence

on the parameter vy, with (P*,XS,RO,¢0) being the normal case where y = 0.
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Our strategy for finding an enforceable action contingent contract
and action level (P(D) X} that dominates the pair (P x*) in the sense that
UA(P(D),X) > UA(P*,X*] is as feollows: First a new contract and actlon,
(P,XJ, is constructed that dominates (P*,x*) and for which UA(P X) = ¥y, where
¥ is small and negative. Then we construct an action contlngent contract with
penalities denoted by P(B) (the development of contingent contracts with

bonus payments is similar) such that

. P(D) - 6(D,X) i€ D > D
POy = . . (42)
P{D,D) if D <D

L]

where P(D,D) > P(D) and 5 1s a constant which depends on D and x and is
implicitly defined by U (P(D),x) = EB. The contingent schedule P(D) is
constructed assuming X = X, and P and P are written explicitly as a function

L)

of D to emphasize their dependence on the cutoff value of D for penalization.
Although the contract (; ;) is not enforceable, i.e., UA(P X) < 0, the
threat of penalization in the action contingent contract, can be used to
enforce %, and if ; is enforceable in the limit as B -+ D(g;i) Wwe can es-—
tablish that UP(2(D),x) + OP(F,%) > o (pa, %) .

Consider the case ¥ = 0, for the problem in (38). From (40)

A, = i—lﬁ (43)

0 Uix
- The multiplier A has the physical interpretation of being the rate of in-
crease in the objective functional UA(P,X) for a decrease in the parameter
Y-24 In (43), ¢° > 0, and U:x(Pa,Xa) < 0 (assuming X maximizes UA(ﬁ;,X))
so that the sign of lo is positive if and only if UxB > 0 and the principal
would like X to be further increased if he could control it given the
payment schedule. We would expect 10 to be positive, certainly given the
agent's propengity to shirk. In this case we can simply choose

-~

(r = P;‘, X = P;[) for y small and negative to find a new contract (p,D}
dominating {P*,X*) with Ux(P,X] < 0. However we have been unable to find
general assumptions that exclude the possibility_k0 < 0, though we can
establish the sign of 10 under certain conditions.

Lemma 7. Suppose the principal is risk neutral, and Z{X,0) is concave in

. _ B
X, given the schedule PS(D}, then AO = ¢0 Ux/Uix >0
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Proof: 1If the principal is risk neutral (A7) becomes a breakeven constraint,
EaP(D(X,BJ} = G where G represents a normal competitive return for the
principal., Fixing X at xs, the first best solution to the agency problem
would require that P*' = 1 and that Z{6) be constant, with Z = EB(Z) =

Wy t E W(x* 8) - G. In. the solution to (38), there clearly exists at 1ea§t
cne 9 e (9, B) such that Z(B) §§z) for otherwise since 2(8) is continuous
this would imply Z(8) < E,(Z} or 2(8) > Eg(2) for all & which would cause

a violation of the breakeven constraint. Suppose 10 < 0, contrary to our
assertion. Then from (43) P*' < 0 for some § and it follows that Z(8) # E(Z)
over some range. Assume, without losing generality,25 that z(8) > (<) E{(2)
{with strict inequality for some 8) for 8 < (>) 6 and consider a new
schedule Z{0) + oh(8) where h(8) = E(Z) - z(6) and a ¢ [0,1}. Then for

¢ >0, h#O0 and uA < 0 we have

h o, -
w*(z + oh) -QA(Z)=U/” o® (2 + aB)AE > u' (z(8))ah = u'(E(2))ah
) 0

for all 6
and it follows that for o > O

EeuA(Z(GJ + ah(8)) - EuA(Z(e)).

o L, - [} At -
> ah u” (2(8)) £(6)ad + [. coh u" (2(8) £(0)d8
0

AY - ®
=u (Z(6)) ah{0) £(€)dse = o.
&

Let Za(ﬁ} = Z{0) + oh(8). Since lo < 0, and E u (Z (8)) > Eu (Z(8))

it necessarily follows from the interpretation of l t?at EB o Z {8) >0
at least for ¢ small. It 1? easy to verify that EeuA z (6) is a continuous
function of a and that EeuA 7> {8) < 9 for oo = 1. Thus there exists at
least one a £ (O, 1) such that EeuA z (6) = 0. Furthermore,
A "
e 1250 = Ee[uA"[z;(eylz M ez +aBg 2] <O

51nce z is concave in X, so that Xx* maxlmlzes E (Zu(B)) But
Eeu (z* ) > E gl (Z) which implies * (D} , X*) domlnates {P* (D) ,%*) where
pd = P* + ah is the payment schedule implicitly defined by Za. Consequently

we have a contradiction, which implies 10 > 0.
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The assumptions in Lemma 7 aye strong and we suspect that the sign of
‘10 can be established under weaker conditions, ﬁH?wever even for Eh? unlikely
case AO < 0 we can construct another contract (P,X) such that UA(P,X) >
UA(Pa,Xa) with Ui(P,x) < 0 as follows. To find a contract that dominates

(Pa,xa) consider the schedule

~

A PA(D} if D <D
P(D}) = ¢ . - o (44)
P(D,D) if D> D
. . by
where P(D,D) is derived as the solution to
-3- A -~
max - u (2) f£{e)yds
-~ *
p B(D.Xbl
subject to - (45)
BA B - - EB 8(D,x*) B
~ u (P{D(XS:B},D)) £{8)ae = - u (Pa(D})f(e)dB
e(D:x*) 3] e

where g = Y5 + W(X*,8) -~ P(D(x*,0)). P is constructed to maximize expected
utility of the agent over the interval [B(D,X*LE], holding X = X* such that
UB(P,Xa) = EB. Clearly for G(D,x*)s'g

- C .
o), x) - ey, xe) =f D 0@ - @) e >0 e
0(D, x*)
by construction. ,

Next, to show that we can find a D such that Ui(P(DJ,x*) is arbitrarily
small and negative we note that:

P A
*) = * why =
(a) U} (P(D(E,x2) $X§) = UZ(P2,x8) = 0
. A .
(L) Ui(P(D(EJXS).XS) = Ux{P(DJ,Xa) < 0. To assume contrarily

that Ui(P(D(Q,XB),XS) > 0. Clearly, U:(P(D(xa,g),xa) = 0 is impossible
since (46) would imply (P(D(xa,ﬁj,xa) is the solution to (38). Suppose
UA(P(D(XS,G),XEJ) > 0. The first order conditions for (45) imply

X 2 -

3P (D,D)

D € (0,1) and therefore Ui > 0. Thus given the schedule P, both

A and B can be made better off by increasing X to X or to the roint where

Ui = 0, but this would again imply that (Ps,xa) is not a solution to {(38).
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{c) Given our continuity and differentiability assumptions about W,
D,C, uA, uB,ﬂand f it can be shown that UA(P(D}, & ),xa) is a continuocus
function of 5.25
Therefore (a) - (c) imply by the intermediate value theorem that there exists
at least one 8 € [9, €] such that UA(P(D(X* 2), x*) = vy for each
v e 10, (RD0xs,0) %81,

Havmng 1dent1f1ed contracts and action levels (P;,X;) for the case

-~ R

AO > 0 and the pair (P(D) X*) for the case A < 0 that dominate (Pa XS) we
now wish to construct action contingent schedules as described in (42) that
are enforceable witg Ui(P(B},X) = 0 and that can be made to approximate
schedules P; and ;(5) to any desired degree. Results on enforceability for
cases AO > 0 and AO < 0 are summarized in Lemmas 8 and 9 ;espectively.
Lemma 8. Assume solutions {P;,x;,lT,ﬁT) to the problem (38) exist, that
they are continuous with respect to y and that 10 > 0., Then there exists

a y < 0 such that

S

3 * * 5 * *
i (PY'XT) dominates (P0 xoj

ii There exists an action contingent contract

. PA(D) - §(D,X*) if D > D
Po) = 4 7 . Y. (47)
P(D,D) if D < D

which satisfies the necessary and sufficient conditions for enforceability

such that
* =
(2) U} (®(D),x2) =0
(b) " (P(D),X) S0 as x5 x*
X Y
so that (P(D),x;) is enforceable
for D ¢ (D(X?,Q),D'): D > D(x;,g) or equivalently
for 0 £ (8,0'}; 6 = G(D,X;}

Part (i) follows from the assumption that AO > 0, which implies
UA(P;,x;) increases monotonically as ¥y decreases for ye {(y', 00, y'* < 0.

To prove part (11 a} that there exists a y e(y',0} such that
UA{P(D) x*) = (0 for B € {(8,8'), we first need to show there exists a y



35

such that Ux{P(D),x;) =0 as 6 - QT and then we can rely on a proof similar

to that for Lemma 2 to establish our xesult. To simplify notation define

Z =Wy + W(X};,B) - P;(D(x;:.e))

2y

W

ot w(x;,e) - P(D,D)

Zo = inf Z = the smallest Z taken over all values of ¥.
Note that (26) implies Z

0 > W. Given the contingent schedule in
(4?) we have: -

Lin uA (M, X = Eg ' (2 [z

(48)
648
A, Ll A a8 A '
+ [uw(z27(8) - u(2(8)) = lim £{6)
o6+
Rearranging (48), and noting that the first term on the right hand side of
(48) is Ui(p;,x;) Y we obtain that 1lim UA(P(D) X%) = 0 if and only if

&+B -

ke = e - o _ 49)

'&x: %im-l- £(6)
6+8
The second term on the right hand side of (47) is negative and can be made
arbitrarily small in absolute value by choosing y sufficiently close to zero.
Let Zl(§) = 2(8) - € where we choose ¢ > 0 such that 2y~ €> W to insure
(a6) is satisfied. Then it follows that there exists a vy close to zero such
that {47) is satisfied. Given llm v, (P(D) x*) = 0 for some Y, we can make

046
the obv;ous alterations in the proof toc Lemma 2 to establish U (P(D} x*) =0

for B e {8,06").

The proof of (ii b) is established in the Appendix.

We now state without proof Lemma 9 which establishes enforceability
conditions for the case 10 < 0, that are analogous to the conditions for
the case 10 > 0, stated in Lemma 8. The proofs of Lemmas 8 and 9 are
essentially the same.

Lemma 9. Assume the solution {Po, 5* 0,¢ )} to the problem in (38} exists

and that AO < 0, Then there exists a schedule P(D}, characterized in (44),
such that
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~

3 ~A* i x yk
b (P(D),XO) dominates (PO,XOJ

ii There exists an action contingent contract

~

oA - L]

- P(D) =~ G(D,xa} ifp>0D
P{D} =§ . N
P(D,D) if D <D

such that
(@) Ao, x5 =0

" <
(b) U:(P(D},x) Z0asx3 x4

and thus (P{D),XE is enforceable

for D ¢ (D(X%.8), D'); D' > D(X%,8) or eguivalently

for 5 e {6,867); 8 = E(B,xa)

Lemmas 8 and 9 suggest that there exists a contract and action level
denoted here by (;(D),X) that dominates the solution pair (Pa, XS) Eo the
standard moral hazard problem posed in (38). The problem is that (P(D),X)
is not enforceable as Ux(;(D),X) < 0. VNevertheless, Ender {Al) ~ (A8B) we
can always construct an action contingent contract P(D) such that the pair
{P(B),x) is enforceable and P(B) can be made t0 approximate E(D) to any
desired degree. A special case, discussed in Section 3, occurs when 9(6)
can be used to enforxrce (P**,X**}, From lLemmas 8 and 9 it follows that

UA(P(BI,X) > UA(PS.XB). To demonstrate this, define:
A =vtem.x - Pegxn > o
A(8) = U P(D),X) - P(BMD),X) > 0

Z = w_ + W(X,0) - ;(D(X.B})

0
zt - Wy + W(X,8) - F(D,D)
72 = Wy + W(X,8) - P(D(X,0)) + 6(D,0)

~

L, | N
where it is understood that 6 = 8(D,X). Then for 6 ¢ 8,6")

-

- 8 )
A08) =f Pz) - Pzl £(o)a0 +f Iz - u*z2] £(0)a0
g 8

a ~
<f W2y - wP(z1)) €018 + 0 as 6 + 6
8
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~ "
But UA(P(D),X) = UA(P*,XB) + A - A(B) which implies that we can choose a
0 sufficiently close to 6 such that

P, x> v iegxs

This result, and Lemmas B8 and 9 establish

Proposition 4. If there exist golutions (P;'x;'AY'¢T) to the standard
moral hazard problem as peosed in (38), then an action contingent contract
P{B} and an action level X exist such that UA(P(B),X} > UA(PS,XB].

We can illustrate the application of Lemmas 7-9 and proposition 4 with

two examples

(a) Spence-zZeckhauser Insurance Problem. For this case, it trivially

follows that we can choose an enforceable action and action contingent
contract (P(B).X) to dominate [PS,XS), since we recall from our in discussion
of this example in Section III that it is possible to construct contingent
schedules that approximate the first hest contract to any desired degree.
This result is driven by the fact that the penalties for shirking can be
made infinitely large by allowing net payments, 2, to approach zero in

the penalty region. 1If, however, we reduce the power to penalize by
reguiring 7 > W >0 we may be confined to second best sclutions. We can
nevertheless apply the results of Lemmas 7 and 8 and propositicn 4 to con-
struct contingent contracts that dominate (P*,x*} For this example,
Lemma 7 implies l > 0 since the principal is rlsk neutral and UA(P + X)

is concave in X (see 20). Assuming solutions (P*,X*,A ,¢ ) exist to the
problem (38) with the added restriction that Z > W > 0,27 then Lemma 8 and
proposition 4 together imply that there exists a pair (P(D) X*) such that
P (e (D), X) > ez, x5 .

{b} leed Royalty Leases. A fixed royalty contract is commonly used

in government leasing of mineral and natural gas and oil reserves to private
developers. Expressed in terms of our model the contract requires the
developer to pay the government a fixed sum'F'plus some constant percentage,
pr (royalty) of the total revenues from the lease, denoted by D(X,0) where

X is the effort devoted to recovering the rescurce and 9, which is unknown,
is the amount of the resource available. The cost of providing effort is
C{X) and 9, the resource abundance, is distributed according to £(8),

Taking a standard approach, the lease is determined as the solution to
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_max UA{E}p,x} = _max EBUA(wb - P+ {1-p)D(X,8) + c(x}) (50)
P,psX P,p,X
subject to
- 28
W Fpx =y (s1)

and the breakeven constraint for the government
B_
Equ (P + p D(X,0)) = O (52)

which might reflect a government policy to recover some fair share of the

rents from the resource reserves. Assuming solutions (P*,p* X*, 2,2 ) to

Yo Y Y
(50) exist, then the maximization reveals that
Bl
= *
% = . Egu [p* D,
UA where
%*
% xx(PO'pO'x )

A and ¢ are the multipliers attached to the constraints (51) and (52},
respectively, and AO is interpreted as the increase in UA for a small
decrease in y away from zero. Using an argument similar to the proof of
Lemna 7 we can show that l > 0. Therefore, by Lemma 8, we can find a
contract and action (P; p$ x*), w1th ¥ < 0, that dominates (P;,p; L X*)

such that x; can be enforced by an action contingent contract Whlch can be
made to approximate the contract characterized by (P;,p;) to any desired

degree. Proposition 4 then implies that

P, xh) > UA(ES,pS,Xa).
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SUMMARY

This paper describes a method of contracting to alleviate incentive
problems cccurring in risk sharing agency agreements. Problems arise be-
cause the principal possesses only partial information on the agent's ac~
tion. In cases of incomplete information, the agent's activity level tends
to be too low (high) if contract payments are based only on cobserved bene-
fits (costs). We consider action contingent contracts to alleviate this
problem, where payment between the principal and the agent are allowed to
shift in accord with the observed level of cutput.

These variations in the payment schedule take the form of penalties
or bonuses which are assessed according to whether the observed level of
output reveals the agent's action to be unacceptable or acceptable based
on some statistical criteria. Similar payment schemes have been explored
by Harris and Raviv (1976) and Shavell (1977), but they require observa-
tions on other variables besides output, which may bhe costly to obtain.

When the potential for penalizing or rewarding the agent is great, or
incentive incompatibilities are relatively minor, we can approximate a
pareto optimal contract to any desired degree with a suitably constructed
action contingent contract. Under less ideal conditions, only second best
solutions exist, but monitoring output nevertheless results in gains to
both principal and agent in action contingent contracts.

The primary result of this paper is that information contained in
cbservation of output can be more fully utilized in action contingent con-
tracts that provide for bonus and penalty payments. The arguments for
bonus and penalty contracts presented here can be interpreted as providing
some theoretical support for the pervasive use of bonus and penalties in
agency agreements like insurance, wage contracts, lease agreements, and

government defense contracting,
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FOOTNOTES
The theory of hierarchy and supervision in employer—employee relation-
ships is discussed in Mirrlees (1976) and Stiglitz (1975). The prob-
lem of cost overruns in defense contracts is discussed by Cummins
(1977). A small sample of the literature on moral hazard in insurance
includes Arrow (1971), Townsend (1976), Pauly (1968}, Shavell {1977},
Spence and Zeckhauser (1971}, and Zeckhauser {(1970). The relationship
between the lessor and lessee is covered by Cheung (1968), Leland {1975},
Newberry (1976), and Stiglitz (1974).
Agreements p;oviding for partial insurance, and for profit and cost
sharing among employees and employers are examples of payments that
are contingent on payocffs,
The analysis could be generalized by making W a function of a vector
of activity-variables and a vector of state variables. The generaliza-
tion allowing for more state variables wonld seem to be gtraightfor-
ward, but the inclusion of additional action variables would appear to
complicate the analysis significantly.
Therefore our analysis is not pertinent for those instances where the
agent has more information than the principal about the state of nature.

The notation, lim and lim refers to the dimit as & approaches € from
g>o”" 6+

above, and the limit as ® approaches ® from below, respectively.’
Townsend (1976) and Shavell (1977) consider cases where observation’
costs are positive.

If P is continuous, a solution to (1} exists since UA(P;X) is continua-
ous and X is chosen from a compact set. " In addition we shall assume
that the £ solving (1) is unique.

Throughout the paper, the derivative of a function is denoted by a

daf (0)
de

_ 3D(x%,8) A - A
6~ 38  ° DNote. uxx{P,x) = Equ

“"prime," i.e., f£'(B)  and partial derivatives are denoted by

¢ 2
i i.e. + -P'D
subscripts, i.e., D [Dx % x]

A . A . .
+ E,u [D +4C -P'D -P"D_]. This U (P,X) is concave in X so long as
6 XX XX Xx X

the payments schedule is not too concave.
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In many agency relationships, there is either competition on the agent's

side of the market, or negotiations between principal and agent are
bilateral so that the principal captures some of the rent from the
contract. The assumption in our model, which has competition among
principals driving their share of the rents to zero, ié made only for
convenience and is not crucial to the analysis. However, a more seri-
ous objection to our model comes from the fact that we are ignoring
some of the strategic aspects that exist in contract bidding. Cox
(1977) and Wilson (1975) present interesting analysis of contract bid-
ding under different institutions.

See Zeckhauser (1970).

The concavity of uA, uB and W guarantee the sufficiency of conditions
(4) and (5).

We provide only an intuitive justification for these conditions as
they are formally derived in Barris and Raviv, Leland, and Spence ard
Zeckhauser.

It is interesting to note that when D = W, the agent generally will
still not choose the optimal action, in this case i %;X** according to
whether the optimal payment schedule is a strictly concave, linear,

or strictly convex function of W. See Leland (1975).

-

- X
Define G{X/D) = 4. g{X/D) £{X)dX. Then the conditicnal probability

that X > X is 1 - G({X/D). It is suxprising that we cannot rule out

dG (X/D)

3D > 0 so the probability that X > X may

the possibility that

actually decrease over a certain range of increasing values for D.

4G (X/D)

< <
an 0 for X sufficiently

It is possible to show, however, that
small,

According to proposition 1, i > X** yhenever Dx < 0. Thus, for a low
{(high) value of D, the principal can infer with high probability that
the agent is (is not) overacting.

P is similar to the dichotomous contract introduced by Harris and

Raviv (1976).
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Some threat of penalization must be preserved in order to enforce X**,
See Townsend for a discussion of stochastic verification.

The property that fN(Bi) >0 for 6 ¢ EQJEH is slightly stronger than
(r4) as it requires that there be some density at the end points of
the support of Bi' A
A solution to this maximization problem exists since U * s continuous
in X and Xi is chosen from a compact set.

This appears to be a common problem with formulations such as ours.
For example Mirrlees (1975) and Shavell {1977) encounter the same
concavity problems but in a different context.

In writing (35) we can effectively ignore the unlikely event which

occurs with probability zero that two or more agents achieve max D(X,0 )

See Holmstrom (1977) and Girsanov (1972) for an interesting dlscu551on
of this problem.

See Dreyfus (1964), pp. 125-7. -

A similar, but merely more complicated mathematical argument is needed
to establish Lemma 7 when this assumption is not fulfilled.

To formally establisy (¢) we can rely on the Euler equations for a
maximum of (44) and our continuity and differentiability assumptions

A B ) , - —
cen W, D, C, u, u and f to establish that given X*, P = P(D,0), where

P is continuously differentiable in D and 9. It follows from the con-

- . - . ~

struction of P(D) that Ui{P(D),X*) is a continuous function of D. See
Pontryagin {(1960), pp. 192-200.

Of course a solution may not exist because the feasible set of 2 is
open. We could enhance the possibilities for obtaining a solution by
allowing the set to contain its lower boundary, and requiring Z = w’
Z_Ei However, with this convention the ability of the principal to
penalize the agent is eliminated if Z = w, t W(x* E}.“ P*(D(X; 8}

should happen to egual W at the cutoff p01nt B = B(D,x ). This does

not appear to be a significant problem, however, since we can always

construct contingent contracts that utilize rewards instead of penalties.

It is easy to verify that UA(E}p,x) is concave in X so that (49) is

sufficient to describe the agent's maximizing choice.



APPENDIX
We wish to verify (a) part b of lemma 2, (b) lemma 3, and {(c) part
{iib) of lemmas B and 9. The proofs of all these parts are similar and are
thus presented together in a general procf given below. To establish a
consistent notation for this discussion we denote x° as an action level

-~

which is to be enforced by an action contingent contract, denoted by P{(D},

~

where P(D} is constructed with reference to a particular contract P(D) such

that

>

p(D) - §(D,%%) if D >
BP(D) =

w8

P(D,D) if D <

where: ‘ (r1)

PN -

P(,D) > P (D),
G(B,Xo) is implicitly defined by UB(P(S),XO) = EB, and ;(D) is
constructed so that Ui(;(D),XO) < 0
the constraint (A6) holds.
Enforceability of (P{B),Xo) requires that x° be the solution to

max U (P (D) ,X) = (2)
X

and first and second order necessary conditions for enforceability are
Ui(P(D),XO) = @ {f.0. necessary condt.j {P3)
sz(P(D),xo} <0 (s.0. necessary condt.) {(r4)

In terms of the notation presented here, part b of lemma 2 is eguiva-

lent to statement A.
A - o n ,
(a) U _(P(D),X") < O for D e (D,D')

Lemma 3 and part {iib) of lemmas 8 and 9 are represented by

-~ ( -~
(B) Ui(P(D),X) %0 as X g x° for D e (D,D')
The conditions Ui(P(D),x) = 0 and (B} and the fact that UA(P(D),X) is con—

. . . "~ A - o
tinuous in X are sufficient to establish UA(P(D),XO) > U (P(D),X) for X # X
and that therefore (P(D),Xo) is enforceable.

In statements {A) and (B) we understand D, D, and 0 to be given by

A~

D= D{XO,B), D = D(Xo,g) and § = B(D,Xo}, respectively.
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The proof of (A) and {B) is constructed as follows:
(1) Consider contingent contracts in (Pl)} with penalty schedules of

the form

P - oD for D ¢ [D,D]
P(D,D)

(P5)

P-aD+ {(D-D) for D < D

-

where o and P are constants which both depend on D, Define the following

variables
1 i - * .0
Z° =W +W(X6) - P(D) + §(D,X")
2% = W o+ WIX,8) - (P - oD)
2> = wW_+Wx,0 - (F-ap+ (D-D)

(ii) Suppose lim U™ (P(D),Xx°) = 0 where
60+

-

POD =P =F- D (p6)

for some P and a. Then as in the proof of lemma 2, part a, we construct
two new contingent schedules Pl(D) and PZ(D} with penalty schedules given
by )

§-+ - aD for D e IEJB]
FI(D,B) =

P+e¢-oD+ (D-D) for D<D

P-¢ - aD for D e [2,6]
52(13,13) =

P-¢- aD + (D-D) for D < D
It follows from lemma 2 that there exists a contingent schedule P3(D) with
a corresponding penalty schedule
53(1:),0) = uFI(D,D) + (1—u)32(D,DJ, ue (0, 1)

such that (P3) is satisfied for S e (b,D'}. Furthermore, this is true for
each P and o satisfying (P6) so that for a given @, one can find a P such
that (P3) is satisfied for 6 e {D,D') with contingent contracts given by
(P1} and (P5).
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(iii) Differentiating UA(P(D) ,Xo) twice with respect to X we obtain

A o, _ P LI R U P LR | 1
Uxx(P(D},x y = E3>B{U {(27) [zx] + U (Zz7) [zxx]}
~r A", 2 2.2 A' 2 2
+ Eeie{'" (27) « (2, )7 +u” (27) [zxx]} A
- (P7)
A 2" A, 1" d ~. 4ae
+ [u'(27(8)) - v (2 (8))] a [f(e} EJ
A', 2.° . 2, A" 1° . 1 " ﬁ
+ 2[u (27(8)) [zx] u (27(8)) IZx]] [f(e) dx]
From (P7} we have Uix(P(D) ,Xo) < 0 if and only if
5 -~ - -A-B-C+ 2u&'(zl(6))[21(9)] (o) %%
zx(e) > T'(B} = = (P8)

2™ (22(6)) £08) %xe_

where the first three terms on the right hand side of (p7) are represented
by A, B, and C, respectively.

From part (ii) we Xnow that for a fixed o there exists a sequence of
P which depends on 5 such that (P3) is satisfied for each 5 sufficiently

close to D. Suppose (P3) is satisfied at some D given a choice of a, then

substituting for C in terms of (P3), (P8) becomes

5 - . [-a-BI[1 + £(6) gﬁ— & £(0) g-?{-” + 2 2t zhe £ej 32
Zx(e) > T{B) = -

. - -

20® (2% @) £0) & (p9)
It can be shown that I'(6) is continuous in 8 given a fixed o, and that the
right hand side of (PS%) approaches

-~

= de . d - dg A' 1 1 da
[-Al 1 + E(8) S [}1m+ = £00) a] 200 (2 @)z (0)) Ele)T

@) = > L6 ~
=~ a' 2 p a0
20 (2 °{8)) f(g)-é-x" (F10)
as +-gf, where £(8) = lim_£(8). Note I'(8) is independent of a (see (Pg))
6+

s0 that we clearly choose an a sufficiently large such that

2 - o .

= P11
zx(_e_) {1 + a) Dx (x",8) + Cx > T(8) ( )

But both Zi(ﬁ) and T{B8) are continuous so that

Zi(ﬁ) > T(8) for 6 sufficiently close to §



ad

. . s A - . s e -
which implies Uxx(P(D),xo) < 0 is satisfied for 0 € (8,8'), ©' > 8. Thus

we have proved statement (34).

(iv) The difficulty one encounters in establishing (B} is that according to
A, .~ A,

{Pl) and (P5) UX(P(D),x) is discontinuous at two points xl and x2 defined

by

|
L wr I

Do, xl) (P11)

i
[ I 1

D(8, x°) (P12)

and thus it is not sufficient to establish Uix(P(D),X) < 0. <Consider each

of three cases.

{a) X < Xl Suppose X is sufficiently small such that D(X,§3 < D. Then

it is easy to verify
Al

A~ _ 3, .3
u_(B(D),X) = Bgu" (27)[Z] < 0.

Instead, suppose that X is sufficiently large such that D{X,E} > D. Then

defining 6, = 8(D,X) and 82 = 8({p,X),

1

L -
u_ (#(D),X} = Ee_ﬁ

A' 3 3 A
u (Z )[Z ] + EB (9 ,B )

1
Now let D approach D, then for those X whlch are still less than xl (note X

(%) (22) ~

1
increases with D) we have
At 3. .3 -
- . < -+
Ui Eeu (Z )[Zx] .0 as D D
so that there exists a D sufficiently close to D such that U:(P(D),x) < 0.

{b) Xl <X g_xz Note that Xo £ [Xlle' A proof similar to the development

e _ ., .\ ~ ]
in part (iii) suffices to show Uxx(P(D),X) < 0 for X e [xl,x 1, D suffi-

2
ciently close to D. This together with the condition Ui(P(D),xO) = 0 implies

U (P(D) x) 0 as X “‘X for X € [x ].

{c) X > X For X = XD, values of D range in the interval [D(X,8), D(X,E}].
and tEGE_EEé schedule P(D) is not explicitly defined for D > D(x 8).
Clearly we can select any schedule for D > D(X ,8} =D w1thout affecting
the crucial necessary condition for enforceable that U {P(D) x° } = 0, so
that we want to choose a schedule such that U (P(D) X) < 0 for X > X° to

insure enforceability. In particular let

;’(DJ = 5(n(x°,€)) + a(D-D) for D > D (r13)
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where o is large, and define 72° = Wo + W(x,0) - P(D(xo,§3 - a{D(X,B) - D

+ 6(0,x°). Then for x > x°
A gyl Al

o, O
{(Z )zx + EB>G(D x)“ (Z )Zx {rl4)

UA(P(D)'X) = Fg<o (T,x)

Recall from (P1) that for D £ [D D], P{D) is constructed so that U (P(D) X )
< 0. Thus as X + x° and D - D we have U (P(D) X) -~ U (P(D) x° )y < 0, Con-
sequently for D sufficiently close to D, and X sufflclently close to X° '

- A', o, 0
6> (-5 X)‘I..l (2 )Z
can be made sufficjently large and negative by specifying a large a in (P13),

to insure UA(P{D) X) < 0,

UA(P(D),X) < 0, ©On the other hand for larger X, the term E

The three cases (a)-{c) combine to yield the result in statement B

. . A, "~ . . ~

which together with the fact that U (P(D)},X) is continuous in X implies
that (P(D),X°) is enforceable if Ui(P(D),Xo) < 0 (see Figure 1).

v e @), %)

Figure 1
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